This function creates a stratified random sample.The difference to get_train_test_split is that this function does not require text embeddings and does not split the text embeddings into a train and validation sample.
Arguments
- targets
Named
vector
containing the labels/categories for each case.- val_size
double
Value between 0 and 1 indicating how many cases of each label/category should be part of the validation sample.
Value
list
which contains the names of the cases belonging to the train
sample and to the validation sample.
See also
Other Auxiliary Functions:
array_to_matrix()
,
calc_standard_classification_measures()
,
check_embedding_models()
,
clean_pytorch_log_transformers()
,
create_iota2_mean_object()
,
create_synthetic_units()
,
generate_id()
,
get_coder_metrics()
,
get_folds()
,
get_n_chunks()
,
get_synthetic_cases()
,
get_train_test_split()
,
is.null_or_na()
,
matrix_to_array_c()
,
split_labeled_unlabeled()
,
summarize_tracked_sustainability()
,
to_categorical_c()