Function reference
-
AifeducationConfiguration
- R6 class for settting the global machine learning framework.
-
aifeducation_config
- R6 object of class AifeducationConfiguration
-
check_aif_py_modules()
- Check if all necessary python modules are available
-
install_py_modules()
- Installing necessary python modules to an environment
-
set_config_cpu_only()
- Setting cpu only for 'tensorflow'
-
set_config_gpu_low_memory()
- Setting gpus' memory usage
-
set_config_os_environ_logger()
- Sets the level for logging information in tensor flow.
-
set_config_tf_logger()
- Sets the level for logging information in tensor flow.
-
set_transformers_logger()
- Sets the level for logging information of the 'transformers' library.
-
start_aifeducation_studio()
- Aifeducation Studio
-
load_ai_model()
- Loading models created with 'aifeducation'
-
save_ai_model()
- Saving models created with 'aifeducation'
-
bow_pp_create_basic_text_rep()
- Prepare texts for text embeddings with a bag of word approach.
-
bow_pp_create_vocab_draft()
- Function for creating a first draft of a vocabulary This function creates a list of tokens which refer to specific universal part-of-speech tags (UPOS) and provides the corresponding lemmas.
-
create_bert_model()
- Function for creating a new transformer based on BERT
-
create_deberta_v2_model()
- Function for creating a new transformer based on DeBERTa-V2
-
create_funnel_model()
- Function for creating a new transformer based on Funnel Transformer
-
create_longformer_model()
- Function for creating a new transformer based on Longformer
-
create_roberta_model()
- Function for creating a new transformer based on RoBERTa
-
train_tune_bert_model()
- Function for training and fine-tuning a BERT model
-
train_tune_deberta_v2_model()
- Function for training and fine-tuning a DeBERTa-V2 model
-
train_tune_funnel_model()
- Function for training and fine-tuning a Funnel Transformer model
-
train_tune_longformer_model()
- Function for training and fine-tuning a Longformer model
-
train_tune_roberta_model()
- Function for training and fine-tuning a RoBERTa model
-
combine_embeddings()
- Combine embedded texts
-
EmbeddedText
- Embedded text
-
TextEmbeddingModel
- Text embedding model
-
TextEmbeddingClassifierNeuralNet
- Text embedding classifier with a neural net
-
array_to_matrix()
- Array to matrix
-
calc_standard_classification_measures()
- Calculate standard classification measures
-
create_synthetic_units()
- Create synthetic units
-
get_coder_metrics()
- Calculate reliability measures based on content analysis
-
get_n_chunks()
- Get the number of chunks/sequences for each case
-
get_synthetic_cases()
- Create synthetic cases for balancing training data
-
matrix_to_array_c()
- Reshape matrix to array
-
to_categorical_c()
- Transforming classes to one-hot encoding
-
update_aifeducation_progress_bar()
- Update master progress bar in aifeducation shiny app.
-
update_aifeducation_progress_bar_epochs()
- Update epoch progress bar in aifeducation shiny app.
-
update_aifeducation_progress_bar_steps()
- Update step/batch progress bar in aifeducation shiny app.