Package index
-
check_aif_py_modules() - Check if all necessary python modules are available
-
get_recommended_py_versions() - Recommended version of python packages
-
install_aifeducation() - Install aifeducation on a machine
-
install_aifeducation_studio() - Install 'AI for Education - Studio' on a machine
-
install_py_modules() - Installing necessary python modules to an environment
-
prepare_session() - Function for setting up a python environment within R.
-
set_transformers_logger() - Sets the level for logging information of the 'transformers' library
-
update_aifeducation() - Updates an existing installation of 'aifeducation' on a machine
-
start_aifeducation_studio() - Aifeducation Studio
-
load_from_disk() - Loading objects created with 'aifeducation'
-
save_to_disk() - Saving objects created with 'aifeducation'
-
EmbeddedText - Abstract class for small data sets containing text embeddings
-
LargeDataSetForText - Abstract class for large data sets containing raw texts
-
LargeDataSetForTextEmbeddings - Abstract class for large data sets containing text embeddings
-
HuggingFaceTokenizer - HuggingFaceTokenizer
-
WordPieceTokenizer - WordPieceTokenizer
-
BaseModelBert - BERT-Transformer
-
BaseModelDebertaV2 - DeBERTa V2
-
BaseModelFunnel - Funnel transformer
-
BaseModelModernBert - ModernBert
-
BaseModelMPNet - MPNet
-
BaseModelRoberta - RoBERTa
-
TEFeatureExtractor - Feature extractor for reducing the number for dimensions of text embeddings.
-
TextEmbeddingModel - Text embedding model
-
TEClassifierParallel - Text embedding classifier with a neural net
-
TEClassifierParallelPrototype - Text embedding classifier with a ProtoNet
-
TEClassifierProtoNet - Text embedding classifier with a ProtoNet
-
TEClassifierRegular - Text embedding classifier with a neural net
-
TEClassifierSequential - Text embedding classifier with a neural net
-
TEClassifierSequentialPrototype - Text embedding classifier with a ProtoNet
-
knnor() - K-Nearest Neighbor OveRsampling approach (KNNOR)
-
calc_standard_classification_measures() - Calculate recall, precision, and f1-scores
-
cohens_kappa() - Calculate Cohen's Kappa
-
fleiss_kappa() - Calculate Fleiss' Kappa
-
get_coder_metrics() - Calculate reliability measures based on content analysis
-
gwet_ac() - Calculate Gwet's AC1 and AC2
-
kendalls_w() - Calculate Kendall's coefficient of concordance w
-
kripp_alpha() - Calculate Krippendorff's Alpha
-
AIFEBaseModel - Base class for objects using a pytorch model as core model.
-
AIFEMaster - Base class for most objects
-
BaseModelCore - Abstract class for all BaseModels
-
ClassifiersBasedOnTextEmbeddings - Abstract class for all classifiers that use numerical representations of texts instead of words.
-
DataManagerClassifier - Data manager for classification tasks
-
LargeDataSetBase - Abstract base class for large data sets
-
ModelsBasedOnTextEmbeddings - Base class for models using neural nets
-
TEClassifiersBasedOnProtoNet - Base class for classifiers relying on numerical representations of texts instead of words that use the architecture of Protonets and its corresponding training techniques.
-
TEClassifiersBasedOnRegular - Base class for regular classifiers relying on EmbeddedText or LargeDataSetForTextEmbeddings as input
-
TokenizerBase - Base class for tokenizers
-
calc_tokenizer_statistics() - Estimate tokenizer statistics
-
knnor_is_same_class() - Validate a new point
-
BaseModelsIndex - List of all available BaseModels
-
DataSetsIndex - List of all available types of data sets
-
get_called_args() - Called arguments
-
get_depr_obj_names() - Get names of deprecated objects
-
get_magnitude_values() - Magnitudes of an argument
-
get_param_def() - Definition of an argument
-
get_param_dict() - Get dictionary of all parameters
-
get_param_doc_desc() - Description of an argument
-
get_TEClassifiers_class_names() - Get names of classifiers
-
TokenizerIndex - List of all available Tokenizers
-
create_dir() - Create directory if not exists
-
get_file_extension() - Get file extension
-
auto_n_cores() - Number of cores for multiple tasks
-
create_object() - Create object#'
-
create_synthetic_units_from_matrix() - Create synthetic units
-
generate_id() - Generate ID suffix for objects
-
get_n_chunks() - Get the number of chunks/sequences for each case
-
get_synthetic_cases_from_matrix() - Create synthetic cases for balancing training data
-
get_time_stamp() - Time stamp
-
matrix_to_array_c() - Reshape matrix to array
-
tensor_to_matrix_c() - Transform tensor to matrix
-
to_categorical_c() - Transforming classes to one-hot encoding
-
build_documentation_for_model() - Generate documentation for a classifier class
-
build_layer_stack_documentation_for_vignette() - Generate documentation of all layers for an vignette or article
-
get_desc_for_core_model_architecture() - Generate documentation for core models
-
get_layer_documentation() - Generate layer documentation
-
get_parameter_documentation() - Generate layer documentation
-
get_py_package_version() - Get versions of a specific python package
-
get_py_package_versions() - Get versions of python components
-
load_all_py_scripts() - Load and re-load all python scripts
-
load_py_scripts() - Load and re-load python scripts
-
run_py_file() - Run python file
-
class_vector_to_py_dataset() - Convert class vector to arrow data set
-
data.frame_to_py_dataset() - Convert data.frame to arrow data set
-
get_batches_index() - Assign cases to batches
-
prepare_r_array_for_dataset() - Convert R array for arrow data set
-
py_dataset_to_embeddings() - Convert arrow data set to an arrow data set
-
reduce_to_unique() - Reduce to unique cases
-
tensor_list_to_numpy() - Convert list of tensors into numpy arrays
-
tensor_to_numpy() - Tensor_to_numpy
-
cat_message() - Print message (
cat())
-
clean_pytorch_log_transformers() - Clean pytorch log of transformers
-
output_message() - Print message
-
print_message() - Print message (
message())
-
read_log() - Function for reading a log file in R
-
read_loss_log() - Function for reading a log file containing a record of the loss during training.
-
reset_log() - Function that resets a log file.
-
reset_loss_log() - Reset log for loss information
-
write_log() - Write log
-
get_alpha_3_codes() - Country Alpha 3 Codes
-
check_all_args() - Check arguments automatically
-
check_class_and_type() - Check class and type
-
add_missing_args() - Add missing arguments to a list of arguments
-
long_load_target_data() - Load target data for long running tasks
-
summarize_args_for_long_task() - Summarize arguments from shiny input
-
check_adjust_n_samples_on_CI() - Set sample size for argument combinations
-
generate_args_for_tests() - Generate combinations of arguments
-
generate_embeddings() - Generate test embeddings
-
generate_tensors() - Generate test tensors
-
get_current_args_for_print() - Print arguments
-
get_fixed_test_tensor() - Generate static test tensor
-
get_test_data_for_classifiers() - Get test data
-
random_bool_on_CI() - Random bool on Continuous Integration